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ABSTRACT

A buckling analysis of an isotropic circular plate with piezoceramic an-
nular plate attached to it is presented. The annular plate is attached at
the circular plate edge so that the radius of the circular plate is the inner
radius of the annular plate. The piezoceramic annular plate is used as
the radial in-plane load source. The radial and hoop stresses are found to
be depends on the radial throughout the annular region while constants
throughout the circular regions. The governing equations is solved ap-
proximately using finite difference method. The solutions to be found
to be in good agreement with results from FEM analysis. A parametric
study also presented.

Keywords: Circular, Annular, Piezoelectric, Intermediate Buckling, Fi-
nite Difference Method.

1. Introduction

Plate buckling problem has been a classical problem in solid mechanics.
There are great many literature and books (Wang et al., 2005) that deals with
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plate buckling problem. Many of the reported annular plate buckling are for-
mulated with the in-plane condition of both inner edge and outer edge are the
similar, i.e. at both edge the plate is allowed to move in-plane and loaded
with the same magnitude of load. This case will lead to a uniform stress dis-
tribution throughout the plate. This will lead to governing equation which
the differential equation that could be solved analytically. However, for an
annular plate with different in-plane condition, the stresses are varied with
the radius which complicate the governing equation and the solution is not
analytically available. Mansfield (Mansfield, 1960) reported on the plate buck-
ling analysis with considering such stresses distribution throughout the plate.
However, he did the buckling analysis for infinite annular plate which simplified
the governing buckling equation and the analytical solution for such problem
is available. He also claimed that the solution is also applicable to a simi-
larly loaded finite annular plate if there is a member of the requisite tensile
stiffness supporting the outer circle. In other reports, Ramaiah and Vijayaku-
mar (Ramaiah and Vijayakumar, 1974) have investigated the elastic stability
of annular plates under uniform compressive forces along the outer edge for
all nine combinations of clamped, simply supported and free edges conditions.
They employed the Rayleigh-Ritz method with simple polynomials as admis-
sible function. Later, there are researchers did analytical approach in solving
buckling problems where the in-plane loads are not uniformly distributed across
the plate (Sheng-li and Ai-shu, 1984, Shi-rong, 1992). Qin Sheng-li and Zhang
Ai-shu (Sheng-li and Ai-shu, 1984) have reported on the problem of unsym-
metrical buckling of an annular thin plate under the action of in-plane pressure
and transverse load. They used the method of multiple scales that is simi-
lar to what Kiang Fu-ru (Kiang, 1980) used in his analysis. Although they
only showed the application of their analysis for circular plate subjected to the
in-plane radial pressures that uniformly distributed over the plate boundaries
(N11 = N22 = −N = constant, and N12 = 0) and also subjected to uniform
pressure that acts on the plate surface, it may be etxended to a radius depen-
dent in-plane load. Li Shi-rong (Shi-rong, 1992) has reported on study of the
axisymmetric nonlinear vibration and thermal buckling of a uniformly heated
isotropic plate with a completely clamped outer edge and a fixed rigid mass
along the inner edge. He used both parametric perturbation technique and fi-
nite different method to obtain the nonlinear response of the plate-mass system
and the critical temperature in the mid plane at which the plate is in buckled
state. Recently, Coman and Haughton (Coman and Haughton, 2006a,b) have
presented a reports on annular plate with simply supported inner edge and free
outer edge and the tensile load is applied at the inner edge. They used com-
pound matrix methods to solve the buckling governing equation. Although,
there are efforts in solving buckling problems of annular plate that consider
the stresses distribution which is not uniform but to the authors knowledge
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it is confined to the annular plate problems. There are also condition where
the stresses for curcular plate behave similarly which is dependent on radial
direction such as circular plate buckling under intermediate radial load. Such
conditions may be realized if the annular regions is heated or through appli-
cation of annular piezoceramic materials. Aung and Wang (Aung and Wang,
2005) have reported on the buckling of circular plate under intermediate and
radial edge loads for various boundary conditions. However, they restricted
their problems either the stresses at annular region is uniform or zero. An
annular plate with two different edge load will always give variations through-
out the plates. To the authors knowledge, the analysis of intermediate radial
loads that consider the variation of the stresses at the annular region is yet to
be done. Therefore, it is of interest of this paper to address the buckling of
circular plate under intermediate radial loads. The intermediate radial loads
is realized through application of piezoceramic materials as its annular region.
The outer edge is clamped. A parametric study also been done to show the
effects of some geometric parameters on the buckling loads.

2. Formulations

2.1 Basic Relations

Figure 1: Circular plate with annular plate attached at its edge

Fig. 1 shows the circular solid plate (grey region) with an annular plate
(white region) attached at its edge. In the present analysis the cylindrical
polar coordinate is adopted. The origin of the coordinate is located at the
centre of the circular. The radius and the thickness of the solid circular plate
are denoted by ri and 2h, respectively. While the outer radius and thickness
of the ring are denoted by ro and 2ha, respectively. The inner radius of the
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annular plate is equal to the circular plate’s radius, ri. In the present analysis,
the material used for the annular plate is a piezoceramic while for the circular
plate is an isotropic alloy. The annular piezoceramic’s two surfaces are coated
with complete electrodes.

In most practical applications, the ratio of a circular plate radius to the
thickness is more than ten where the plate is considered to be a thin plate.
For a thin plate, Kirchhoff’s hypotheses may be applied and the shear defor-
mation and rotatory inertia can be omitted. Under these assumptions, the
strain-mechanical displacement relations can be expressed as:
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∂u0
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where u0, v0 and w0 are the mid-plane radial displacement, circumferential dis-
placement and deflection, while e0ij and κij are the in-plane strain and curva-
ture, respectively. The variation of stress throughout the thickness for isotropic
thin plate are,
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where E and µ the Young coefficient and Poisson ratio for the isotropic shim,
respectively and subscript (s) denotes the solid circular region. The linear
piezoceramic constitutive equations for a piezoceramic material with crystal
symmetry class C6mm (Tiersten, 1969) under the assumptions made above can
be written as
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where sEij are the compliance constants, dij are the piezoelectric constants,
εTij are the dielectric constants, eij are the strains components, σij are the
stresses components, Di are the electric displacement components, Ei are the
electric field components, νp = −sE12/sE11, and subscript (a) denotes the annular
piezoceramic region.

Apart of the Kirchhoff’s assumptions, a piezoceramic plate needs an extra
assumptions. The assumption of electric field is constant across the thickness
of piezoelectric layer violates the Maxwell static electricity equation. Wang et.
al. (Wang et al., 2001) proposed that the electric potential varies in thick-
ness of piezoelectric layer by a quadratic law, which satisfies the Maxwell
static electricity equation. Therefore in the present analysis in addition to
the Kirchhoff’s assumptions for thin plate, for piezoceramic annular plate, the
electric potential is assumed to varies with the thickness by the square law,
i.e. φ = φ0 + φ1z + φ2z

2 where φ0, φ1 and φ2 are constants and the electric
displacement is assumed to be constant with respect to the plate thickness, i.e.
∂D3/∂z = 0 (Huang et al., 2004, Huang, 2005). The constant in the equation
of the electric potential can be determined from the electric potential boundary
conditions on the piezoceramic layer surfaces, relations of electric displacement
to electric potential from linear piezoelectric constitutive equations, Eq. (10)
and the assumption of constant electric displacement in thickness. This follows
the work of Huang (Huang et al., 2004, Huang, 2005). Therefore by using the
piezoceramic constituve equation, the electric potential boundary conditions
and the assumption on electric potential, the distribution of electric field for
the piezoceramic ring can be determined. The electric potential boundary con-
dition for the present piezoceramic ring are φ|z=ha

= V and φ|z=−ha
= 0,

where the surfaces of the plate are assumed to be fully coated with electrode.
Thus, the distribution of electric field is

E
(a)
3 = − V

2ha
− zd31

εT33s
E
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(
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) (κ(a)11 + κ
(a)
22

)
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where k2p = 2d231
(
εT33s

E
11 (1−νp)

)
is the planar electromechanical coupling coef-

ficient, and subscript (a) denotes the annular region.

The in-plane loads, N11, N22 and N12 are defined as the integration of the
stresses over thickness which results

N
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)
(12)
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for piezoceramic plate. A, G are the strectching stiffness and shear modulus
for isotropic plate, Ap and Gp are the stretching stiffness and shear modulus
for piezoceramic plate and Np is the in-plane load due to the applied voltage
which are defined as

A =
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;
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(1 + µ)
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2h

sE11
(
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) ;Gp =
h
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2.2 In-plane Load Distribution for Circular and Annular
Plate

In the present analysis, the pre-buckling state of stress and strain is assumed
to be axisymmetric such that u = u(r) and v = 0. For such case, the Eq. (1)-
Eq. (3) for strains becomes

e011 =
∂u0
∂r

;e022 =
u0
r
ande012 = 0 (19)

From radial component of the plate equlibrium equations along with Eq. (15)-
Eq. (17) (or Eq. (12)-Eq. (14) for isotropic plate) and Eq. (19)

− 1

r

[
∂

∂r
(rN11) +

∂N12

∂θ
−N22

]
= 0

du2

dr2
+

1

r

du

dr
− u

r2
= 0 (20)

which is a Cauchy-Euler equation. The general solution of the Eq. (20) is

u(a) =
C1

r
+ C2r (21)

where the coefficients C1 and C2 are determined from boundary conditions.
Since the in-plane load is depends on the strain which in turn depends on
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the mechanical displacement, therefore if the displacement is known then the
in-plane load is also known.

For a solid circular plate, the first terms of Eq. (21) may produce singularity
at the center of the plate. To avoid the singularity problem, the first term
should be omitted thus the solution of Cauchy-Euler equation for a solid circular
plate may be written as

u(a) = C4r (22)

If one substitute Eq. (22) into the in-plane load expression (Eq. (12)-Eq. (14))
as,

N
(s)
11 = C4A (1 + µ) = N

(s)
22 = Ns (23)

which gave the in-plane load distributions for solid circular region. It reveals
that the in-plane loads are independent of radius and uniformly distributed
across the plate. In addition, the radial in-plane load is equal to circumferential
in-plane load.

The constants C1, C2, and C4 are determined by the boundary conditions
of the plates. Here, the determination of the constants for a circular plate
with applied intermediate radial load and clamped at outer edge is shown. The
intermediate radial load may be realized by heating some annular portion of
the plate or attaching with piezoelectric part. For present analysis, a circular
plate is attached with an annular plate which surrounds it therefore by applying
voltage on the annular plate may results tensional or compressed force to the
circular plate. The boundary condition that being considered here is clamped
outer plate while at interface between circular and annular plate, a matching
condition is imposed. From clamped outer edge condition,

u(a)
∣∣∣
r=ro

= 0 (24)

At interface circular - annular, the matching condition requires the radial in-
plane load and radial displacement for both plate to be equal,

u(s)
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= u(a)
∣∣∣
r=ri

and N (s)
11

∣∣∣
r=ri

= N
(a)
11

∣∣∣
r=ri

(25)

Mathemathically manipulate these three equations (Eq. (24)-Eq. (25)) will give
the constants C1, C2 and C4 as

C1 = − Npr
2
i r

2
o(

(r2o − r2i )
(
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11 +A
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)
+ r2o

(
A

(a)
11 −A

(a)
12

)
+ r2i

(
A

(a)
11 +A

(a)
11

))
(26)

C2 = −C1

r2o
(27)
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C4 = −
C1

(
r2o − r2i

)
r2i r

2
o

(28)

Therefore the in-plane load distribution are,
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2.3 Governing Equation

In the present analysis, the shear in-plane load N12 is zero while the radial
and circumferential in-plane load may be varied with radial direction. Under
this condition, the thickness direction equilibrium equation for axisymmteric
problem may be written as

D∇4
rw −N11

d2w

dr2
− N22

r

dw

dr
= 0 (32)

where ∇4
r is the polar biharmonic operator which defined as

∇4
r ≡

d4w

dr4
+

2

r

d3w

dr3
− 1

r2
d2w

dr2
+

1

r3
dw

dr
(33)

Eq. (32) is the general governing equations that govern a circular plate, thus
either solid circular or annular plate is govern by Eq. (32). However, in the
present analysis, the different appear in the definition of the in-plane load. For
the annular region, the in-plane load is varied in radial direction (Eq. (29) and
Eq. (30))but for solid circular region they are constant throughout the region
(Eq. (31)).

2.4 Boundary Conditions

For the problem that is considered here the outer edge is clamped. At
the interface between annular plate and circular plate a matching condition is
imposed. The mathematical expressions for this condition are
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1. at r = ro, clamped outer edge

w(a)
∣∣∣
r=ro

= 0and
dw(a)

dr

∣∣∣∣
r=ro

= 0 (34)

2. at r = ri, matching condition
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dw(a)

dr

∣∣∣∣
r=ri

=
dw(s)

dr

∣∣∣∣
r=ri

;

M
(a)
11

∣∣∣
r=ri

= M
(s)
11

∣∣∣
r=ri
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1
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(35)

where M11 and V1 is radial bending moment and radial effective shear force
which respectively given by

M11 = −D
(
d2w

dr2
+
µ

r

dw

dr

)
(36)

and

V1 = −D
(
d3w

dr3
+

1

r

d2w

dr2
− 1

r2
dw

dr

)
+N11

dw

dr
(37)

3. Finite Difference Method

The problem of annular thin plate is actually a 2-D problems involving two
independent variables namely radius, r and circumferential, θ. However, in
the present analysis the dependent variable (the deflection w) is expand using
the harmonic function. This reduce the problem into a 1-D problem involving
one independent variables, the radius r. In the problem of 1-D circular plate,
one may model the plate from one outer edge to another, but here the authors
modeled half of the plate (i.e. modeled the plate from the center of the plates
to the outer edge of the plates). This may reduced the number of nodes and
thus reduce the cost of calculation time.

In the present paper, the problem is solved by using finite difference method
(FDM). The governing equations and boundary conditions will be descretized
by applications of the central difference approximations. The descretized equa-
tions along with the descretized boundary conditions will then formed a system
of algebraic equations to be solved.

At the interface of circular and annular plate, the matching condition is
imposed. As mentioned earlier, in application of central difference, there exists
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phantom nodes outside the physical region. For finite different problem involv-
ing two different regions such as this problem, the phantom nodes of one region
fell into another region. The phantom nodes one region will equal to nodes on
another region if the meshing is equal in both regions. In the present study,
the mesh is set to equal. In the present problem, the space between two nodes
is defined by

rstep =
2 (ro − ri)
2m+ 1

(38)

where m is the number of nodes between nodes at inner edge and outer edge.

3.1 Treatment at Center of Circular Plate

Solving differential equation, such as the plate governing equation for disk,
which use a polar coordinate pose a problem at the origin or the center of
the plate since it is singular at that point. Some researchers proposed extra
condition for the origin which would give a non-singular solution at the origin
(Mohseni and Colonius, 2000). Lai (Lai, 2002) has proposed a very simple way
to treat this problem. Lai (Lai, 2002) recognize that the numerical boundary
condition at the origin (or the pole) in the traditional finite difference is needed
only in the discretization of the transformed equation in the polar coordinate
system. There is no need to impose any conditions from the rectangular co-
ordinate point of view. He proposed a special mesh point locations so that
this numerical boundary condition can be avoided. The special mesh points is
achieved by shifting a grid a half mesh away from the origin and incorporat-
ing the symmetry constraint of Fourier coefficients. This approach also does
not need to use one sided difference approximation (i.e. backward difference
approximation) at the origin. The similar approach also reported by Mohseni
and Colonius (Mohseni and Colonius, 2000).

4. Results and Discussions

The properties of piezoceramic material and the isotropic alloy are summa-
rized in Table 1 and Table 2, respectively. Aung and Wang (Aung and Wang,
2005) has reported a circular plate buckling problems due to intermediate ra-
dial edge. However in their report, the stress distribution at annular plate is
assumed either uniform throughout the annular plate or stress free. This is not
the case if the annular plate is constrained with two different conditions along
its two edges. For the stress to be uniform throughout the annular plate, the
in-plane load has to be equal at both of its edge and for the annular plate to
be stress free, it has to be constrained so that the annular plate behave like a
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Table 1: Material Properties of Piezoceramic PIC-151

Property Value

sE11 (10−12 m2/N) 16.83
sE33 19.0
sE12 -5.656
sE13 -7.107
sE44 50.96
sE66 44.97

d31 (10−10 m/V) -2.14
d33 4.23
d15 6.1

εT11 (10−9 F/m) 17.134
εT33 18.665

Table 2: Material Properties of Brass Alloy

Property Value

E (109 N/m2) 110
µ 0.34

Figure 2: Radial stress distribution with applied voltage is 200 V

rigid body. Fig. 2 shows the comparison of the determined stress variation with
the one obtained from FEM analysis. The results shows excellent agreement
between the two results except at very narrow region at the annular-circular
interface. The authors believe this is due to the boundary layer effects at an
interface of two different regions with different properties.
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In the present case, which the author believe to be the case for many practi-
cal cases due to intermediate radial load, the stress is varied with radius. This
is due to the fact that the radial load is different for both inner and outer edge.

The FEM analysis is done by using FEM software (ABAQUS) where the
plate is modeled by using axisymmetric element (8-node biquadratic axisym-
metric quadrilateral, reduced integration (CAX8R) for isotropic alloy region
and 8-node biquadratic axisymmetric piezoelectric quadrilateral, reduced inte-
gration (CAX8RE) is used for piezoceramic region). The FDM is formulated
as discussed in Section 3 and coded in MATLAB. The number of nodes at the
annular regions, m is 150 nodes. The number of nodes at the circular region
varies as the inner edge varies. Table 3-5 shows the critical buckling loads
compared to the one found by FEM analysis.

Table 3: Critical buckling voltage for circular and annular plates having equal thicknesses

Mode (nodal circle) FDM (Hz) FEM (Hz) Error (%)

1 (1) 245.93 235.00 4.44
2 (2) 844.10 825.27 2.23
3 (3) 1747.10 1713.60 1.92
4 (4) 2987.10 2945.30 1.40

Table 4: Critical buckling voltage for annular plates is thicker than circular plate

Mode (nodal circle) FDM (Hz) FEM (Hz) Error (%)

1 (1) 742.20 725.85 2.20
2 (2) 2366.20 2296.30 2.95
3 (3) 4397.70 4239.20 3.60
4 (4) 6860.60 6703.40 2.29

Table 5: Critical buckling voltage for circular plates is thicker than annular plate

Mode (nodal circle) FDM (Hz) FEM (Hz) Error (%)

1 (1) 671.00 650.90 3.00
2 (2) 1654.50 1602.60 3.14
3 (3) 4398.80 4324.30 1.69
4 (4) 6862.10 6804.20 0.84

Fig. 3, Fig. 4, and Fig. 5 shows some of the parametric study. Fig. 3
shows how the critical buckling voltage change with the inner radius. Other
parameters is fixed. Outer radius, r1 is fixed at 40 mm while the annular and
circular thicknesses are divided into 3 cases, (a.) same thickness at 0.3 mm, (b.)
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Figure 4: Critical Buckling Voltage change due to Annular Thickness

annular (0.6 mm) thicker than circular thickness (0.3 mm) and (c.) circular
(0.6 mm) thicker than annular thickness (0.3 mm). The results for this config-
urations shows that for cases which annular that having similar thickness with
circular and circular plate is thicker, the critical buckling voltage is increases
with the inner radius. While for case which annular thicker than the circular
plate, it seems that the inner radius change does not have significant effects
in changing the buckling voltage. Also, one may notes that the inner radius
have significant influence on the critical buckling voltage for the case of circular
plate is thicker than the annular plate where the increase is rapid as the inner
radius increase. Fig. 4 shows how the critical buckling voltage change with
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Figure 5: Critical Buckling Voltage change due to Circular Thickness

the annular thickness. The outer radius and circular thickness for this case
are 40 mm and 0.3 mm, respectively. The inner radius are divided for 3 cases
which are (a.) 12 mm, (b.) 20 mm and (c.) 28 mm. For this configuration the
results shows that, for any inner radius, the critical buckling voltage increases
as the annular thickness increases. Note that annular thickness more than 0.3
mm refers to annular plate is thicker than the circular thickness. Fig. 5 shows
how the critical buckling voltage change with the annular thickness. The outer
radius and annular thickness for this case are 40 mm and 0.3 mm, respectively.
The inner radius are divided for 3 cases which are (a.) 12 mm, (b.) 20 mm
and (c.) 28 mm. For this configuration one may see that, beyond the thickness
around 0.4 mm, the critical buckling voltage almost unchanged as the circular
thickness increases except when the inner radius is near to outer radius. Note
that circular thickness more than 0.3 mm refers to circular plate is thicker than
the annular thickness.

5. Conclusions

A buckling analysis of an isotropic circular plate with piezoceramic annular
plate attached to it is presented. The annular plate is attached at the circular
plate edge where the radius of the circular plate is the inner radius of the
annular plate. The piezoceramic annular plate is used as the radial in-plane
load source. The radial and hoop stresses are found to be depends on the radial
throughout the annular region while contants throughout the circular regions.
The governing equations is solved approximately using finite difference method.
The solutions to be found to be in good agreement with results from FEM
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analysis. A parametric study also has been conducted. It is found that the
inner radius has a significant influence in critical buckling voltage except for
the case of annular plate is thicker than the circular plate. Also, it is found that
for inner radius far enough from the outer radius, the circular thickness only
influence the critical buckling voltage when the circular plate has thickness near
the annular plate or smaller. Lastly, the critical buckling voltage increases as
the annular thickness increases regardless the annular plate is thicker or thinner
than the circular plate.
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